Blog Categories

About Us

AceMagnetics.com has become the premier magnetic bracelet, copper bracelet and magnetic jewelry online catalog as a result of our commitment to one simple tenet - customer service.
Continue

Recent Posts

Blog Archive

  1. August 20151 Posts
  2. March 20151 Posts
  3. June 20141 Posts
  4. December 20131 Posts
  5. November 20131 Posts
  6. August 20131 Posts
  7. March 20132 Posts
  8. December 20121 Posts
  9. November 20121 Posts
  10. August 20121 Posts
  11. December 20111 Posts
  12. November 20112 Posts
  13. October 20113 Posts
  14. September 20111 Posts
  15. August 20113 Posts
  16. June 20111 Posts
  17. April 20112 Posts
  18. March 20113 Posts
  19. February 20112 Posts
  20. January 20115 Posts
  21. December 20102 Posts
  22. November 20101 Posts
  23. October 20105 Posts
  24. August 20105 Posts
  25. June 20101 Posts
  26. May 20101 Posts
  27. April 20101 Posts
  28. March 20104 Posts
  29. February 20105 Posts
  30. January 20106 Posts
  31. December 20096 Posts
  32. October 20096 Posts
  33. September 20095 Posts
  34. August 20096 Posts
  35. July 200912 Posts
  36. June 20094 Posts
  37. May 20096 Posts
  38. April 20095 Posts
  39. March 200910 Posts
  40. February 20094 Posts
  41. January 20094 Posts
  42. December 20089 Posts
  43. November 20084 Posts
  44. October 20081 Posts
  45. September 20086 Posts
  46. August 20082 Posts
  47. July 20081 Posts
  48. April 20081 Posts
  49. February 20083 Posts
  50. January 20089 Posts
  51. December 20074 Posts
  52. September 20072 Posts
  53. August 20071 Posts
  54. July 20073 Posts
  55. June 20079 Posts
  56. May 200719 Posts
  57. April 200734 Posts
  58. March 200748 Posts
  59. February 200722 Posts
  60. January 20077 Posts
  61. December 20061 Posts
  62. November 200622 Posts
  63. October 200611 Posts
  64. September 20062 Posts
  65. August 20065 Posts

Apr 12

Magnetic Fields in Space? Yes and possibly as important as gravity in forming a Universe.


Possible Origin Of Magnetic Fields In Space Uncovered

Astronomers have suspected that magnetic fields in space play a key role in the makeup of galaxy clusters -- the basic building blocks of the universe.

Now, an Ohio University-led research team has uncovered what may be the origin of those fields, a finding that has eluded scientists for more than a decade.

The scientists analyzed data collected from NASA’s Chandra X-ray Observatory and discovered a series of enormous cosmic “bubbles,” formed more than 100 million years ago, that may contain and transport magnetic fields. These bubbles also may play a role in the creation of new stars in today’s galaxies, and may have been critical in the early stages of the universe.

“We think magnetism, in some locations of the universe, could have been as important as gravity in shaping the overall structure,” said Brian McNamara, an Ohio University astronomer who presented the findings Tuesday at the annual meeting of the American Astronomical Society in Washington, D.C.

Using the Chandra observatory, an orbiting spacecraft that houses the most powerful X-ray telescope in existence, McNamara and his collaborators have been examining the forces at work in several galaxy clusters. Galaxy clusters are made of individual galaxies, hot gases and dark matter.

The researchers initially discovered that the X-ray emissions from several galaxy clusters were full of holes, or cavities, that contained bright radio emissions. These cavities probably were created by an explosion of high-energy particles, which left the radio emissions in its wake.

However, the Chandra data on another galaxy cluster known as Abell 2597, located more than 1 billion light years away from Earth, showed a surprising difference. The cluster’s cavities -­ which the researchers dubbed “ghost cavities” ­- contained only faint radio emissions. They seemed to float out of the centers of galaxy clusters like bubbles in a glass of soda pop, McNamara said. But these bubbles are 60,000 light years across in size, almost as big as the Milky Way galaxy.

The data suggest that the ghost cavities are filled with magnetic fields, which are released into the cosmos when the cavities burst apart. This could explain the strong magnetic forces that make up the structure of galaxy clusters, according to the astronomers.

“We’ve known for the past 15 to 20 years that magnetic fields exist, but we didn’t understand how they got there,” said McNamara, an associate professor of physics and astronomy in the College of Arts and Sciences whose research is funded by NASA. “This could be a viable mechanism.”

The ghost cavities also may play an indirect role in star formation, according to the scientists. As the cavities move out of the center of the galaxy cluster, the surrounding gases cool and matter becomes dense, falling into a supermassive black hole in the cluster center. That triggers an explosion of radio emission, which sprays matter through the galaxy cluster. Under certain conditions, the matter may form new stars.

This process may happen from a dozen to hundreds of times during the life of the galaxy cluster, McNamara said, and most likely occurs in other galaxy clusters.

The key role of magnetic forces in galaxy clusters suggests that they also may have been an important mechanism in creating cosmic structure in the distant past, when the universe was smaller and the radio emission was more powerful, McNamara added.

Next the scientists will conduct a more detailed analysis of the properties of ghost cavities and their role in galaxy clusters.

“We have a sketch of what’s going on, but the details are foggy at this point,” McNamara said.

Collaborators on the project are Michael Wise of the Massachusetts Institute of Technology, Paul Nulsen of the University of Wollongong in Australia, Larry David of the Harvard-Smithsonian Center for Astrophysics, Chris Carilli of the National Radio Astronomy Observatory, Craig Sarazin of the University of Virginia, and a group of astronomers from the Space Telescope Science Institute and the University of Virginia. - By Andrea Gibson

Posted by Jay Roberts at 03:12 AM | Permalink

TrackBack

TrackBack URL for this entry:
http://site.acemagnetics.com/blog-mt/mt-tb.fcgi/134